MENINGOENCEFALOCELE OCCIPITAL CONGÊNITA E MUTAÇÃO DA MTHFR - C677T EM HETEROZIGOSE – RELATO DE CASO

CONGENITAL OCCIPITAL MENINGOENCEPHALOCELE AND MTHFR - C677T MUTATION IN HETEROZIGOSIS - CASE REPORT

CORIDON FRANCO DA COSTA ESPÍRITO¹, ALESSANDRA ANDRADE OLIVEIRA DE CARVALHO1, MARIA DE FÁTIMA MIRANDA DE ABREU SCHETTINO¹, CRISTIANE STOCO FADINI¹, CAMILA PONCIO¹, DAYVSON ARAÚJO DA ROCHA¹, BRUNA CAPILLA MOSCOSO CANTO¹

RESUMO

INTRODUÇÃO: A meningoencefalocele congênita é o resultado de grave falha no processo de neurulação primária do tubo neural. Tem incidência de 0,1 a 10:1.000 nascidos vivos, nas diversas regiões demográficas. Os defeitos do tubo neural são multifatoriais, mas a principal causa é relacionada ao metabolismo do folato.

RELATO DE CASO: O objetivo é relatar um caso de meningoencefalocele com diagnóstico ultrassonográfico intraútero, que aconteceu em Vitória-ES. Dados de prontuário informatizado foram utilizados como metodologia.

Concluindo, o diagnóstico precoce possibilita atendimento especializado, melhorando substancialmente, a assistência materno-fetal.

PALAVRAS-CHAVE: TUBO NEURAL, CONGÊNITO, MENINGOENCEFALOCELE, DIAGNÓSTICO, ULTRASSONOGRAFIA.

ABSTRACT

INTRODUCTION: Congenital meningoencephalocele is the result of a serious failure in the primary neurulation process of the neural tube. It has an incidence of 0.1 to 10: 1.000 live births in different demographic regions. Neural tube defects are multifactorial, but the main cause is related to folate metabolism.

CASE REPORT: The objective is to report a case of meningoencephalocele with intrauterine ultrasound diagnosis, which took place in Vitória-ES. Computerized medical record data were used as a methodology

In conclusion, early diagnosis enables specialized care, substantially improving maternal-fetal care.

KEYWORDS: NEURAL TUBE, CONGENITAL, MENINGOENCEPHALOCELE, DIAGNOSIS, ULTRASOUND.

INTRODUÇÃO

As malformações fetais mais comuns são as anomalias do sistema nervoso central, e estas incluem defeitos cranianos e disrafismo espinhal. No Brasil, as malformações congênitas estão em segundo lugar entre as causas de mortalidade infantil. ¹

A meningoencefalocele congênita é a formação mais frequente de disrafismo crânio vertebral, representando grave

falha no processo de neurulação primária do tubo neural, que ocorre nas primeiras quatro semanas de gestação. Tem incidência de 0,1 a 10:1.000 nascidos vivos, nas diversas regiões demográficas. A forma mais prevalente é a occipital, que se estende do osso occipital até o forame magno, com herniação craniana.²

Os defeitos do tubo neural são multifatoriais, envolvendo fatores genéticos e ambientais, que levam a alterações

1. Espaço Fetal Ultrassonografia, Vitória, E.S

Endereço para correspondência: Coridon Franco da Costa Espirito Ed. Enseada Trade Center - R. Prof. Almeida Cousin, 125 - sl 615 - Enseada do Suá, Vitória - ES, 29050-565 Email: coridonfc@gmail.com / mfmabreu@gmail.com no metabolismo do folato (regulador de vias biológicas fundamental para o crescimento, diferenciação e proliferação celulares adequadas).¹

O prognóstico é variável de acordo com o conteúdo do saco herniário e do local envolvido, que pode causar vários déficits e complicações neurológicas. Pode levar a morbidade devastadora e múltiplas deficiências; portanto, o prognóstico geralmente é pior se diagnosticado tardiamente ou deixado sem tratamento.³

O acompanhamento pré-natal é fundamental para realização de medidas preventivas e detecção de anomalias estruturais. A ultrassonografia morfológica fetal de rotina, nas gestantes de baixo risco, é relevante para a descoberta precoce e consequente preparo familiar, em tentativa de melhorar o prognóstico.⁴

O relato envolve um caso de meningoencefalocele occipital congênita em uma gestação de uma mulher de 28 anos de idade, em Vitória, Espírito Santo, Brasil.

RELATO DE CASO

P.S.C, 28 anos, GI PO AO, sem reposição de ácido fólico pré-concepcional. A ultrassonografia de primeiro trimestre não demonstrou alterações. O exame de imagem do segundo trimestre (ultrassonografia obstétrica com 17 semanas e 2 dias) demonstrou solução de continuidade da calota craniana occipital à esquerda com herniação do tecido cerebral, configurando importante encefalocele e comunicação interventricular (CIV), conforme visto na figura 1. Quando a gestação completou 38 semanas, a paciente foi submetida à cesariana eletiva, para preparo neonatal, com nascimento de recém nascido vivo, sexo feminino, peso 2.960grs, comprimento 44cm, apgar 9/9, apresentando sinais de microcefalia e encefalocele.

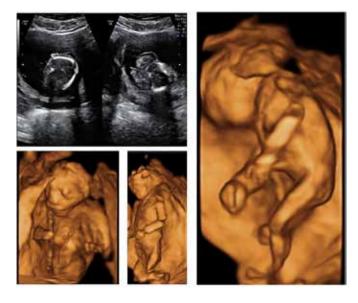


Figura 1 – Solução de continuidade da calota craniana occipital à esquerda, com herniação de grande parte do tecido cerebral: meningoencefalocele. Calota craniana de dimensões reduzidas

Realizada tomografia do crânio que evidenciou redução significativa do parênquima cerebral com meningoencefalocele occipital. O ecodopplercardiograma confirmou a CIV muscular apical. O recém-nascido veio a óbito após 10 dias do nascimento.

Exame histopatológico compatível com meningoencefalocele occipital. Mãe apresentou mutação da enzima metilenotetrahidrofolato redutase (MTHFR) – C677T em heterozigose com homocisteína normal.

DISCUSSÃO

A meningoencefalocele ocorre em cerca de 1 a cada 10 outros defeitos do tubo neural. O desenvolvimento da medula espinhal ocorre entre a segunda e a sexta semana de gestação. Durante a neurulação primária, as pregas neurais surgem com uma depressão central chamada sulco neural. As dobras neurais serão gradualmente fundidas, para formar o tubo neural. O fechamento das extremidades craniana e caudal do tubo neural marca o término do processo. Quaisquer defeitos durante este processo estariam associados à meningoencefalocele ou mielomeningocele. ⁴

A deficiência de folato é a principal causa relacionada a defeito do tubo neural. Ele é um cofator fundamental envolvido na metilação de ácidos nucleicos, proteínas e lipídios – envolvidos na manutenção da estabilidade genômica e expressão gênica, além do papel na síntese das purinas e pirimidinas, que são necessárias para síntese e reparo de DNA. Os termos folato ou ácido fólico podem ser usados como sinônimos, e fazem parte das vitaminas do complexo B. A insuficiência deste cofator causa elevação dos níveis de homocisteína. ⁵

Concentrações moderadamente elevadas de homocisteína sérica também podem estar associadas a um risco aumentado de tromboembolismo, aterosclerose e complicações na gravidez tardia, como a pré-eclâmpsia, descolamento prematuro de placenta, retardo no crescimento intrauterino, parto prematuro e até mesmo morte fetal intrauterina. ^{5,6}

Genes envolvidos na absorção do folato e de seu metabolismo podem apresentar inúmeras alterações, como polimorfismos do gene MTHFR. A enzima MTHFR é codificada pelo gene metilenotetrahidrofolato redutase (MTHFR). As mutações podem alterar o efeito benéfico dos folatos e outras vitaminas B, mudando o fluxo entre os co-fatores do folato, a síntese de DNA e as reações de metilação. ⁵

A mutação no gene MTHFR na posição nucleotídica 677 (éxon 4), foi uma das primeiras descritas, onde ocorre uma mutação de substituição de Citosina por Timina, o que resulta em mudança de Alanina para Valina. Na presença de heterozigose, genótipo 677CT, a atividade específica da enzima MTHFR é reduzida em 35%. Vários estudos demonstrando a ligação entre os polimorfismos do gene MTHFR com o fechamento do tubo neural, além de ser um fato de risco genético para doenças vasculares.⁷

No caso relatado, o uso do ácido fólico foi iniciado apenas no primeiro trimestre, comprometendo assim, os be-

nefícios de seu uso pré concepção. Além disso, um estudo genético realizado evidenciou mutação materna da MTHFR - C677T em heterozigose e como constatado, também contribui como fator de risco para defeitos do tubo neural. ⁷

Outros fatores de risco associados aos defeitos do tubo neural são hipertermia, obesidade, diabetes mellitus, uso de ácido valproico, insulina e salicilatos, excesso ou deficiência de vitamina A, deficiência de zinco.⁸

O prognóstico das alterações na formação do tubo neural, varia entre incapacidades crônicas graves, como paralisia de membros, hidrocefalia, deformação de membros e da coluna vertebral, disfunção vesical, intestinal, sexual e dificuldade de aprendizagem, com risco de desajuste psicossocial. A mortalidade aumenta dependendo da gravidade da lesão. ²

A detecção antecipada de defeitos do tubo neural, oferece esperança para intervenção precoce, além de um prognóstico melhorado a longo prazo. Estudos demonstram que as alterações geralmente são identificadas no segundo ou terceiro trimestre, principalmente em exames ultrassonográficos bidimensionais. O ultrassom tridimensional permite maior resolução da anatomia da superfície fetal, com melhor diferenciação entre estruturas fetais no primeiro trimestre (até a nona semana de gestação) com potencial de trazer uma revisão nas diretrizes para a triagem de defeitos congênitos.⁹

A sensibilidade da ecografia fetal de alta resolução é próxima de 100%, em mãos experientes. A primeira ecografia gestacional idealmente realizada entre 11 e 13 semanas de idade gestacional, tem o objetivo de datar corretamente a gestação, e pode identificar algumas anormalidades anatômicas fetais. A ecografia obstétrica morfológica do segundo trimestre, realizada entre 20 e 22 semanas, pode detectar duas alterações cranianas que ocorrem em associação com a mielomeningocele. A primeira é um cavalgamento ósseo frontal secundário à perda liquórica espinhal, conhecida como "sinal do limão". A segunda alteração é o "sinal da banana", uma deformidade do tronco encefálico com um cerebelo alongado em formado bicôncavo envolvendo o tronco e obliterando a cisterna magna. ¹⁰

Outros exames diagnósticos também podem ser utilizados, como a dosagem materna da alfa-fetoproteína, que idealmente é realizada entre 16 e 18 semanas de gestação e tem níveis consideravelmente aumentados em defeitos do tubo neural. Porém, está em desuso devido a baixa especificidade. A ressonância magnética é um excelente exame de imagem não invasivo, e é uma alternativa que pode ser utilizada. ¹⁰

A orientação familiar deve ser realizada após a confirmação da alteração, quanto ao prognóstico desfavorável no pós-natal, em relação aos distúrbios intelectuais e alta mortalidade. A necessidade de acompanhamento ultrassonográfico, e interrupção via alta a termo, com assistência multidisciplinar, deve ser discutida com os familiares.⁵

Apesar da alta morbimortalidade, o rastreio pré-natal se torna importante, para o diagnóstico precoce da malformação e melhor programação do período neonatal.

REFERÊNCIAS

- Ferreira AEGMT, Mauad-Filho F, Mauad FM, Ramalho FS, Nóbrega FP, Melo KS, Zerwes N, Crott GC. Encefalocele transesfenoidal transpalatina: diagnóstico pré-natal – Relato de caso. RBUS 2013;19 (15):49-52.
- Kavamoto APB, Ferri CRG, Pereira FS, Ribeiro GP, Pinto IPS, Amaral WN. Frequência das alterações do sistema nervoso central na ultrassonografia morfológica do segundo trimestre. RBUS 2013; 18(14): 9-14.
- Alruwaili AA, M Das J. Myelomeningocele. In: Stat Pearls [Internet]. Treasure Island (FL): Stat Pearls Publishing Janeiro 2019.
- Moldenhauer JS, Adzick NS. Fetal surgery for myelomeningocele: After the management of myelomeningocele study (MOMS). Semin Fetal Neonatal Med. 2017; 22(6):360-366.
- 5) D´Elia PQ. Impacto dos polimorfismos C677T e A1298C do gene MTHFR nos resultados de fertilização in vitro em mulheres brasileiras. São Paulo 2012. https://document.onl/documents/impacto-dospolimorfismos-c677t-e-a1298c-do-gene-dedicatoria-dedico-este-trabalho.html, acessado dia 28 agosto de 2020.
- 6) Gueant JL, Gueant-Rodriguez RM, Anello G, Bosco P, Brunaud L, Romano C, et al. Genetic determinants of folate and vitamin B12 metabolism: a common pathway in neural tube defect and Down syndrome? Clin Chem Lab Med 2003; 41:1473-1477.
- Steegers-Theunissen RP, Van Iersel CA, Peer PG, Nelen WL, Steegers EA. Hyperhomocysteinemia, pregnancy complications, and the timing of investigation. Obstet Gynecol 2004;104:336–343.
- 8) Ribeiro GP, Amaral WN. Meningoencefalocele occipital, diangóstico ecográfico relato de caso. RBUS 2014;16: 64-70.
- Forest CP, Goodman D, Hahn RG. Meningomyelocele: Early detection using 3-dimensional ultrasound imaging in the family medicine center. J. Am. Board of Family Medicine 2010; 23(2):270-272.
- 10) Bizzi JWJ, Machado A Mielomeningocele: conceitos básicos e avanços recentes. J Bras Neurocirurg 2012; 23(2):138-151.